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ABSTRACT

We have recently described a technique for optical line-width measurements. The system currently is capable of

measuring line-width down to 60 nm with a precision of 2 nm, and potentially should be able to measure down to 10nm.

The system consists of an ultra-stable interferometer and artificial neural networks (ANNs). The former is used to

generate optical profiles which are input to the ANNs. The outputs of the ANNs are the desired sample parameters.

Different types of samples have been tested with equally impressive results. In this paper we will discuss the factors that

are essential to extend the application of the technique. Two of the factors are signal conditioning and sample

classification. Methods, including principal component analysis, that are capable of performing these tasks will be

considered.
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1. INTRODUCTION

Dimensional measurement has long been an important application for optical techniques. Systems based on fringe

projection and optical triangulation have been used extensively for measuring the shapes and sizes of objects. At the other

end of the application spectrum is critical dimension (CD) measurement, where sub-micrometre measurement is required.

For dimensional metrology, optical techniques possess many attractions: they are non-contact, reliable and relatively easy

to operate. Their measurements can be related to international recognised standards, and are traceable when

monochromatic light source is used. However, their applicability for CD measurement has diminished greatly in recent

years. Because of the rapid advance in modern industry, the dimensions of many features of interest are so small that they
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are beyond the resolution limit of optical techniques. To this end, the use of scanning electron microscopy and atomic

force microscopy is becoming more widespread for CD metrology.

Over the years, there has been much research aimed at increasing the lateral resolution of optical systems. Many of the

proposed methods attempt to extract object information from the image that was originally outside the optical system

bandwidth. The theoretical background behind the techniques was established in a number of publications. [1,2,3].

Different implementations have been proposed to realise the resolution improvement, some based on analytical methods

[3,4] and others are iterative [5]. Naturally, the performance of all these methods is greatly affected by system noise. By

using the prolate spheroidal wave functions [6,7], Rushford and Harris [8] examined the influence of various types of

noise on the improvement achievable. Another approach investigated the problem from the view point of information

theory [9,10], and introduced the concept that the information content of an image is a fixed quantity. Processing of the

image may increase the effective bandwidth of the system, but it can only do so at the expense of other parameters, such as

a deterioration in the SNR of the data. In practice, the resolution improvement that can be achieved is limited.

We tackle this problem from a different angle. Instead of attempting to increase the effective bandwidth of the system, we

aim to measure the dimensions of the sample directly. We use an ultra-stable optical interferometer [11] to produce

samples profiles, which are then input to suitably trained artificial neural networks to produce the sample dimensions. In a

previous publication [12] we have shown measurements of track widths down to 60 nm, with an repeatability of 2 nm. The

optical system used had a numerical aperture of 0.3, and a HeNe was used as the source. The point spread function (psf) of

the system was 2.6 m in diameter (NA = 0.3,  = 633 nm), which was about 43 times the width of the track measured.

The objective of this paper is to investigate the possibility of extending the application of the technique. We will study the

critical factors that need satisfying if the system is to measure multiple sample parameters, such as width, separation,

depth and local gradient. In the next section, we will summarise the salient points of our technique. In section 3 we will

use results obtained before to demonstrate the capability of the system. We will then discuss issues relating to the

measurement precision and noise, and the classification of different types of samples.

2. OPTICAL INTERFEROMETER AND ANN

The system principles have been reported previously [12] and we will only describe the main points here. The system

consists of a scanning optical interferometer and artificial neural networks. The requirement of the interferometer is to

produce highly repeatable surface profiles with high signal to noise ratio. The profiles are input to the ANNs that have

been trained for the measurements.

The optical system is a common path scanning interferometer, which we developed previously [11]. It uses a computer

generated hologram as the beam-splitter. This allows the two interfering beams to traverse similar path through the system

and reduces greatly the effects of vibration. The interferogram thus formed consists of a set of parallel fringes, and the

surface information is contained in the phase and contrast of the fringes. The fringe pattern is captured with a CCD camera

and processed in a PC. Because of the common path nature of the system, the interferometer is extremely stable, with the

long term drift (over several hours) and the short term phase noise to be 1 mrad and 0.01 mrad respectively. The sample



stage is a piezo flexure nanoscanner (PI-P517) with capacitor position sensors, and has a 1 nm scan resolution. By

scanning the sample in the x-y plane, profiles of the samples are built up.

Before the ANNs can be applied to the measured profiles, they need to be trained. This will require a set of reference

samples of known dimensions, covering the measurement range of interest. The training procedure is illustrated in figure 1.

The reference samples, typically 15 or so, are measured using the optical system. The signal conditioner firstly

differentiates the profiles and then calculates their spectra, which are used as the inputs to the ANN. The weights of the

network are initially assigned with small random values. The ANN’s output for each profile is compared to the target

values, which are the known dimensions of the samples. The error signal e is feedback to the network, and the weights are

adjusted using the back propagation algorithm [13], to reduce the error. This process is repeated, using the same set of

samples, until some pre-defined conditions are met and the process is then terminated. The resulting ANN is then trained

for that particular measurement purpose. For different applications, separate ANNs will need to be trained.

The type of ANN used in our system is a simple multiple layer feed-forward network, with eight input nodes and five

hidden nodes. The number of outputs depends on the required measurement and is either one or two. Figure 2 is a

schematic of the ANN.

Figure 1. Schematic showing the training of ANN
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3. SUMMARY OF PREVIOUS RESULTS

The system described in section 2 has been used to study different samples, some of the results have been published

elsewhere [12] and others are to be published. In this section we will use a couple of these results to demonstrate the

abilities of the technique.

Sample 1: single tracks measurement The sample was a silicon substrate with isolated tracks etched on it. The track

widths ranged from 60 nm to 480 nm in steps of 20 nm. The optical system used a 0.3 NA/x10 Zeiss Epiplan objective and

a HeNe laser. This corresponded to a psf of 2.57 µm, and a lateral resolution of 1.29 µm according to the Rayleigh

criterion. Each track was scanned several times and the profiles were processed with a trained ANN. Figure 3 shows the

spread of the measurements. A number of observations can be made:

1. the standard deviation of the spread is 1.8 nm, which is about 1/1400 of the diameter of the psf of the system;

2. the smallest track in the set is 60 nm, which is 1/43 of the diameter of the psf;

3. 60nm does not represent the limit of the system set up. It is merely the smallest sample available;

4. by using a shorter wavelength light source and a higher NA objective lens, a track width of 10 nm should be

within the measurement range of the system;

5. a number of ANNs were trained under different conditions, and similar results were obtained;

6. tracks that were outside the training ranges of the networks would result in large error;

7. the measured tracks did not need to coincide with any of the reference samples.

Sample 2: double tracks measurement The sample consisted of pairs of chromium tracks deposited on a glass substrate.

The widths of the tracks ranged from 1 to 3 micrometres and separations 1 to 4.8 micrometres. The pairs of tracks were

well separated from each other. The NA of the objective used was reduced to 0.11. Two networks were tested. The first

was a single ANN that consisted of two outputs: width and separation. The second network consisted of two ANNs, one

measured the width and the other the separation. The results are shown in Table 1. It is clear that the two ANN network

performed better than the single one, the percentage spread (~0.14%) is two times larger than the case of single track

measurement. The last point is of particular interest and will require further investigation.

One ANN two outputs Two ANNs each one output

Width nm (%) Sep nm (%) Width nm (%) Sep nm (%)

STD 25.4 (0.36%) 14.5 (0.21%) 9.52 (0.14%) 9.29 (0.13%)

Table 1: Double tracks, STD of spreads from one ANN with two outputs, and two ANNs each one output. Figures in

brackets are percentages with respect to the psf

4. EFFECTIVE BANDWIDTH AND NOISE AMPLIFICATION

The results shown in section 3 demonstrated the capability of the technique. We will now concentrate on the objectives of



this paper and address the theoretical background of the method. From the experimental results shown above, it is clear

that the system needs to be extremely repeatable and possess high signal to noise ratio in order to provide the measurement

accuracy. These requirements, however, are normal for any good measurement instrument. The optical system we used is

constructed on an optical breadboard mounted on an optical table. The system is located in a general purpose laboratory

without any special isolation facility. Even better measurement results could be expected if the environmental conditions

are improved. These requirements, although necessary, are not sufficient to guarantee good results. In the next three

sections, we will examine factors that will critically affect the system.

As mentioned in section 1, information theory can be used to describe the output of an optical system, and the information

content N of a profile obtained from a time independent 1D system is given by

)/1(log)21( 2 nsLBN  (1)

where L is the length of the profile, B is the bandwidth of the system, and s/n is the average signal to noise ratio of the

profile. Once a profile is taken, the value of N is fixed and cannot be increased through processing of the profile. The

effective bandwidth of the signal can be increased but only at the expense of other parameters. Figure 4 is a plot showing

the reduction of the average signal to noise ratio as a function of SR, where SR is the bandwidth extension factor given by

extensionbeforebandwidth

extensionafterbandwidth
SR  (2)

Figure 4 is obtained with a system NA of 0.3, and a wavelength of 633nm. The three initial system SNR have been shown

and the reductions in the SNR values are severe. The effects of these reductions on the measurement precision will be

examined.

We will use the measurement of track widths as examples to investigate the relationships between the effective bandwidth,

noise and the measurement precision. We will calculate the change in the sample profile as a function of the track width,

and compare it to the noise level of the system, before and after the extension of the system bandwidth. Briefly, the process

involves is [14]

 A Type I [15] scanning optical microscope is modelled to give the intensity profiles of tracks of widths wi. The

Figure 4. Reduction in system SNR for three different

starting SNR. System NA = 0.3 and  = 633nm.



optical model will not be discussed further as it does not affect the investigation;

 A particular number of detected photons, is assigned to the profile. This will define the SNR of the profile if photon

shot noise is taken as the only significant noise source;

 The profile is integrated to give the total number of photons, Pi;

 The process is repeated with different values of wi.

Figure 5a is a plot of Pi against wi. The optical system modelled has the same parameters as the one used in figure 4, and

the averaged number of detected photons is 1x106 per scan point. Next we differentiate the curve P(w) and calculate the

parameter R:

w
w

P
R 




 (3)

Figure 5b shows R as a function of w, with w = 2 nm and an averaged number of detected photons of 5x107 per scan point.

Also shown is the average noise level of the system. The curve R intersects the noise level at w = 34 nm, meaning that it is

capable of a measurement precision of 2 nm at the track width of 34 nm.

The simulation is repeated with an effective system NA of 0.4, or SR = 1.33. The reduced SNR, according to eq. (1),

corresponds to a detected number of photons of 6x105 per scan point. Figures 5c & 5d are the resulting curves. The R

curve now intersects the noise floor at the track width of 280 nm, which is much worse than the first case. This result may

appear to be counter intuitive, but is merely a reflection that, although increasing the effective bandwidth will improve the

system sensitivity, is actually increases the effects of noise much more. This point is illustrated further at figure 6, where

the intersection level (IS) is plotted as a function of the average number of detected photons per scan point. Two system

bandwidths, 0.3 and 0.4 NA have been simulated. Considering point A on the 0.3NA curve, it has an IS value of 70 nm

Figure 5. Effects of noise on

measurement precision, a & b: system

NA = 0.3; c & d: effective NA increased

to 0.4.

Horizontal axes: track width in micron

Vertical axes: relative intensity

* b & d have been normalised for ease of

comparison.



with an average number of detected photons of 2x107 . If we change the NA of the optical system to 0.4 but keeping the

SNR unchanged, the operating point will be shifted to B, which gives an IS value of 62 nm. If, however, the bandwidth is

increased by means of signal processing of the profile generated with the 0.3NA system, eq. (1) will apply. The averaged

NOP of the resulting system would decrease to 4.3x104, which is indicated by line C in figure 6. As can be seen, line C

does not intersect curve B. This means that, with this level of SNR, the system is not capable of measurement track width

with a repeatibility better than 2 nm (at least for tracks smaller than 0.5 µm

To further illustrate this point, figure 7a shows the profile of a track obtained using a 0.3 NA system without addition of

any noise. Figure 7b is the profile if the effective bandwidth of the system NA is extended to 0.6. Again, no noise has been

imposed. If we now impose noise onto the profiles, using the relationship stated in eq. (1), figures 7c & d are resulted. The

average number of photons per scan point is 5x107 in 7c, this yields an average NOP of 7x103 per scan point. It is not

surprising that the resulting level of noise would severely affect the measurement precision.

5. ANN AND OPTIMUM DATA FILTERING

Figure 7. Effects of extending the effective

bandwidth on the noisy profiles.

Figure 6. Relationships between extending the

system effective NA, the signal to noise ratio of the

system, and the measurement precision



The results presented above indicate that extending the effective bandwidth does not actually improve the measurement

precision. Improvement can be had, however, by using data selected specifically from the profiles. This is basically the

essence behind our technique. With reference to the signal conditioner (SC) in figure 1, it has two functions: 1) to calculate

the spectra of the differentials of the optical profiles; and 2) to select a number of points from the differential spectra for

the ANN inputs. The first point has been discussed elsewhere [16] and will not be repeated here, suffice it to say that the

ANNs failed to function when other data format was used. The second point is directly relevant to the discussion here. We

have found that both the number of spectral points and their locations can critically affect the measurement. The

experimental results shown in section 3 were obtained using eight points, spaced equally in the frequency domain. This

format produces good results although it is still not optimum. It was found subsequently that by reducing the number of

inputs to five and avoiding the low frequency range of the spectrum, slight improvement can be achieved [16]. Conversely

it was found that some regions of the spectrum could have negative influence on the measurement, and their inclusion

could make the results worse. Moreover, the format of this ‘ideal’ pattern is dependent on the sample under examination.

An isolated track and two closely spaced tracks, for example, will require different input formats if best results are to be

obtained. All these are important considerations when designing the signal conditioner and the ANN. Further research is

required and the findings will be presented in a future publication.

6. SIGNAL CLASSIFICATION AND MULTIPLE ANNS

Using the system described, we have measured different samples with high degree of precision. We have also shown,

through computer simulations, that other structures, such as tracks with asymmetric sidewall angles, could be measured

successfully. Several important factors, such as good system stability and high signal to noise ratio, and appropriate signal

conditioning, have been discussed above. Another important factor is that complicated measurement tasks should not be

placed upon the ANNs, or their performance would be degraded. This point is clearly demonstrated in section 3, where

two ANNs performed much better than the single ANN.

If the system is required to carry out different types of measurements, many ANNs should be used with each trained for

one specific measurement. This should not present much difficulty, as the training and the storage of the ANNs are

relatively straightforward. Matching the sample with the appropriate ANN, however, can be problematic if a priori

knowledge of the sample does not exist. To make the system even more powerful, it will need to be able to recognise the

sample and determine the appropriate ANNs to use. This calls for classification of the samples and will be discussed

briefly here.

Many techniques exist for classifying object and self-organising map is a good example [13]. We have also trained a feed

forward ANN (figure 2) for the task. To test the network, the single and double tracks profiles described in section 3 were

mixed together. When the ANN was applied to the profiles, the single and the double tracks were separated without any

failure.

Another group of techniques that can potentially be used for this purpose is the multivariate analysis algorithms, among



them are the principal component analysis, independent component analysis, factor analysis and projection pursuit [17].

Initial study of this group of techniques has shown great potential for our application, and we will use the principal

component analysis (PCA) to describe briefly the principle.

PCA is an orthogonal decomposition technique using eigenfunction analysis. The aim is to project data onto a set of

mutually perpendicular axes. The resulting eigenvalues and eigenvectors indicate the degree of significance of different

components. Imagine a set of two dimensional data given by

],,,[],,,[ 321321 nn yyyyYandxxxxX   (4)

The first step of PCA is to calculate the covariance matrix, Cv{X,Y}, of the data. Next, eigenvalue decomposition is

applied to Cv, yielding two eigenvectors with two eigenvalues. If one eigenvalue is much greater than the other one, it

means that most of the energy contained in the data is concentrated along the direction given by the corresponding

eigenvector. For our analysis, we need to have a set of reference profiles R, generated using the optical system. The

reference samples should contain the different structures of interest. If S is the unknown profile to be measured, it can be

treated as the X-vector in (3). Selecting one reference profile from R, PCA can be applied to R-S. The process is then

repeated with the other reference profiles. Or the entire set of references can be used at once, as PCA is used for

multi-dimensional analysis. This will yield an array of eigenvalues and eigenvectors. By examining this array, much

information regarding the sample can be gained.

Classification is not a one step process. Depending on the complexity of the sample, several iterations with different PCA

and ANN may be needed. As with other forms of search and matching algorithms, the technique will work best if the

sample range is limited. The success or otherwise of the classification depends on the availability of the reference profiles,

which can be added to the system when they become available. In other words, the application of the system can grow and

keep pace with the demand of the user.

Another potential advantage of the PCA is that it can simplify the profiles before they are input to the ANNs. In addition to

the eigenvalue and eigenvector, we can extract the eigenfunction of the principal component as well. The eigenfunction is

a least mean square best match of the reference profile and is particularly useful for complicated samples, as most of the

irrelevant information is removed from the eigenfunction and will ensure good performance of the ANNs.

7. CONCLUSIONS

In this paper, we have presented a technique for precise measurement of structures that are in the nanometre scale. The

system can be divided into three sections: optical instrument, signal classification and conditioning, and signal

measurement. The optical section and the signal measurement section are relatively straightforward, and their workings

have been demonstrated with experiments. Track width measurement down to 60 nm with uncertainty less than a couple

of nanometres has been achieved. Our existing system consists of the optical section, the signal conditioning, and the



measurement section. If the application of the system is to be broadened, the classification section will become crucial.

Much future work is required for this section in order to determine which type of multivariate analysis is suitable for the

sample type concerned. Our effort has concentrated on measuring samples of different structures. Another important goal

is to measure multiple parameters of a sample, as it will open up the possibility of optical imaging with resolution beyond

the diffraction limit. Findings of this work will be presented in future publications.
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