

Sub 0.1µm Track Width Measurement Using a Common Path Optical Interferometer and Artificial Neural Network.

Richard Smith

Supervisors: CW See*, MG Somekh*, A Yacoot**

*Applied optics and optical engineering group, School of Electronic and Electrical Engineering. University of Nottingham

**National Physical Laboratory

Talk Outline

- Introduction
- Artificial Neural Network
- Optical System
- Results
- Discussion / Future Work

Introduction

Aim: Measure trackwidth structures down to 0.1micron

Problem: Optical system limited by diffraction limit. Using high

NA and short wavelength this limit is around 250nm

Rayleigh Criterion = 0.61 lambda/NA

This means that 0.1 micron is not possible with just an optical system alone.

Introduction

- Optical system truncates spectral components present in system
- Reconstruct spectral components to obtain a higher resolution image
- Extension limited due to SNR of real signal
- We require value of the trackwidth
- •Use artificial neural network (ANN) to extract this information.
- •INCREASE IN MEASUREMENT CAPABILITY NOT RESOLUTION

Artificial Neural Network

- Each node is a simple unit
- Combined into networks
- •Form powerful nonlinear computational networks

- We use a Feed-forward network
- Typically: 8 inputs,5 'hidden' nodes & 1 output node

Artificial Neural Network

The Training Process

Optical System

Common path scanning optical interferometer

Uses hologram as beam splitter which produces two beams

- •One focused beam on sample surface
- One collimated beam on sample surface

On reverse path beams recombine and interfere

The two beams traverse similar paths, providing a common path and stable configuration

Experimental Results

- $-\lambda = 633$ nm NA = 0.3
- Deviation between targets and ANN response approx. 2nm
- •Smallest track is **1/46th** of the optical spot size

Experimental Results

General result

Out of Range

Target Errors

Can network correct for incorrect targets when training?

- Update targets and retrain to correct target error
- Repeat until update is small

Target Errors

Simulation

Experimental

	Target	Update
Pass One	206	-3.43
Pass Two	202.56	-1.299
Final	201.27	

Discussion/Future Work

- Capability of system
 - 10nm is a strong possibility
- Areas under investigation
 - -Effect of track shape
 - -Apply to other structures
 - -Importance of input points
 - Optical system design

Conclusion

- •Have combined an ANN and optical system to measure track widths down to 60nm with 0.3NA and wavelength of 633nm
- •Which is **1/46th** of the optical spot size
- Network produces general results but only for the range of tracks that the network was trained for
- System is able to correct for small training target errors

Acknowledgements

RS thanks the EPSRC and the National Physical Laboratory for a studentship. Part off this work was carried out under the DTI Programme for Length Measurement 2002-2005.

Questions?

R Smith email: EEXRJS@Nottingham.ac.uk