

Laser-based ultrasonic characterisation of Ge membranes

O. Trushkevych, V.A. Shah, M. Myronov, J.E. Halpin, S.D. Rhead, M.J. Prest, D.R. Leadley, and R.S. Edwards

Department of Physics, University of Warwick, UK

Germanium

Ge on Si:

- Sensors
- avalanche diode detectors
- photonic modulators
- solar cells
- heterojunction bipolar transistors

Ge membranes - more rapid and higher sensitivity response 0.7μm thick, 965μm x 965μm single crystal Ge membrane on Si

Interested in: vibrational frequencies, quality factor Q residual stress or Young's modulus robustness to shock

THE UNIVERSITY OF WARWICK

European Research Council

Ge

Si

two-wave mixer laser interferometer IOS AIR-1550-TWM calibrated to give the absolute out-of-plane deflection amplitude

WARWICK

THE UNIVERSITY OF

Stress and Q factors

Mode	in air (1000 mbar)			at 10 mbar			in vacuum (5e-4 mbar)		
n:m	$f_{nm}^{exp}(\pm 1 \text{ kHz})$	Q	$f_{nm}^{\sigma=0.28GPa}$	f_{nm}^{exp} (± 0.5 kHz)	Q	$f_{nm}^{\sigma=0.22GPa}$	$f_{nm}^{exp}(\pm 0.1 \text{ kHz})$	Q	$f_{nm}^{\sigma=0.205GPa}$
$ \begin{array}{c} 1:1\\ 2:1\\ 3:1\\ 3:2 \end{array} $	142 kHz 225 kHz 312/322 kHz 368 kHz	$47 \\ 27 \\ 59 \\ 63$	142.0 kHz 224.5 kHz 317.4 kHz 361.9 kHz	149 kHz 235.5 kHz 334 kHz 381.5 kHz	252 548 202 281	149.0 kHz 235.5 kHz 333.1 kHz 379.8 kHz	$ \begin{array}{r} 143.5 \\ 227.4 \\ 322.8 \\ 370.5 \end{array} $	$3460 \\ 228 \\ 201 \\ 600$	$143.8 \\ 227.4 \\ 321.5 \\ 366.6$

Experimental vs calculated membrane frequencies at several pressures, stress in the calculation is chosen for the best match with the experimentally observed frequencies;

the table also shows experimental Q factors

- Stress expected from growth conditions 0.18 GPa
- Stress calculated from experimental frequencies using modes up to 3:2 -0.2 – 0.28 GPa
- Q-factors of 1:1 mode : 47 at atmospheric pressure, 3460 at 5·10⁻⁴mbar

Conclusions

- The method is fast and non destructive
- Allows to calculate Young's modulus if sample behaves as a vibrating plate (no stress)
- Allows to calculate tensile stress if sample behaves as a membrane (in this work $\sigma = 0.22$ GPa)
- Quick assessment of Q factors (47 at 10^3 mbar and 3460 at $5 \cdot 10^{-4}$ mbar)
- Allows to evaluate anisotropy (in this work membrane was isotropic)
- Robustness to shock of membranes can be implied from vibrational frequencies and Q factors
- Suitable for life testing
- It is important to control heating which becomes significant in vacuum

More detail in STAM 15 (2), p 025004 (2014)

Future:

- Looking at more complex structures such as beams and spider web structures
- Entirely different but related to optics: liquid crystals for ultrasound sensing

Acknowledgements

This work was funded by

• European Research Council under grant 202735, ERC Starting Independent Researcher Grant to Rachel Edwards

• EPSRC grant EP/I031979/1 (First Grant Scheme)

