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ABSTRACT

In this paper, we will describe a technique that combines a common path scanning optical interferometer with artificial
neural networks (ANN), to perform track width measurements that are significantly beyond the capability of
conventional optical systems.

Artificial neural networks have been used for many different applications. In the present case, ANNs are trained using
profiles of known samples obtained from the scanning interferometer. They are then applied to tracks that have not
previously been exposed to the networks. This paper will discuss the impacts of various ANN configurations, and the
processing of the input signal on the training of the network.

The profiles of the samples, which are used as the inputs to the ANNs, are obtained with a common path scanning
optical interferometer. It provides extremely repeatable measurements, with very high signal to noise ratio, both are
essential for the working of the ANNs. The characteristics of the system will be described.

A number of samples with line widths ranging from 60nm-3m have been measured to test the system. The system can
measure line widths down to 60nm with a standard deviation of 3nm using optical wavelength of 633nm and a system
numerical aperture of 0.3. These results will be presented in detail along with a discussion of the potential of this
technique.
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INTRODUCTION

Providing calibrated line width standards for industry is an important measurement service. Over recent years as the
feature size of these calibrated samples have decreased it has become impossible to use conventional optical
microscopes for these measurements. Therefore there has been a move to using other, non-optical techniques, to achieve
the necessary measurement resolution. These techniques include atomic force microscopy (AFM) and scanning electron
microscopy (SEM). While these systems have lateral resolutions not matched by optical systems, they are not without
problems of their own. They are expensive, difficult and time consuming to operate. The sample may also be damaged
unless great care is taken when operating the system.

In this paper we will describe a technique that combines an optical interferometer with an artificial neural network,
which is capable of measuring line widths substantially below 0.1 m.
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The factors that govern the lateral resolution of an optical microscope are well known: for a particular configuration, the
bandwidth of the microscope is determined by the wavelength of the light used and the numerical aperture of the
objective lens. Features smaller than a certain size will scatter most of the illumination light outside the aperture of the
system, thus making it impossible to resolve the features. In addition, as the feature sizes of the object decrease, the
optical profiles will no longer be linearly related to the actual object, and critical measurement of the dimensions will
increasingly be affected by random noise associated with the system. One such example is shown in figure 1, where the
FWHMs of the simulated, noiseless, track profiles are plotted against the actual widths. The diameter of the psf of the
simulated microscope is 2.6 m. It is apparent that when the track width goes below 1.5 m, accurate measurement will
become difficult.

There has been much research in the area of super-resolution, [1 2] with the aim of reconstructing the spatial frequency
components of the object that are originally outside the system bandwidth. Many of the super-resolution techniques are
based on the principle of analytic continuation [3 4] . To achieve any reconstruction of the object spectrum, the signal to
noise ratio of the system needs to be extremely high, as discussed in the article by Cox and Sheppard [5] . In addition,
the transfer function of the system needs to be known very accurately. In practice, therefore, the amount of improvement
is limited.

We have taken a different approach, which is more suited for our application, where only an accurate value of the track
width of the object is required. The information contained within one single parameter is much less than that contained
in an extended spectrum, however small the latter may be [5] . The approach we have adopted makes use of an ultra-
stable scanning interferometer, which is capable of producing sample profiles of high signal to noise ratio. We then
process the profiles by using artificial neural networks, resulting in accurate measurements of line widths of tracks much
smaller than those afforded by conventional optical microscopes. It should be reiterated that, at the moment, the
technique only produces one single measurement and does not represent super-resolution, although work is underway to
extract other parameters associated with the sample dimensions.

In the next section we will describe the optical system and the requirements demanded on it by the ANN. The
characteristics of the ANNs suitable for our application will then be discussed. Experimental results, showing the
capability of the technique, will be presented. Finally, areas of future work will be considered.

OPTICAL SYSTEM

The requirements of the signal processing technique on the optical system mean that it must be very stable, produce
repeatable measurements and have a high signal to noise ratio. As the samples of interest will usually be purely phase

Figure 1: Actual Vs Measured Trackwidth for Simulated Data



objects the system must be sensitive to phase changes. A scanning interferometer is preferred as it meets all of the
criteria.

The system used to obtain surface profiles is an ultra stable common path scanning optical interferometer[6].

The system employs a computer generated holographic (CGH) element as a beam splitter. The CGH creates two output
beams from an incident collimated beam as shown in figure 2. The first beam is the unaltered zero order beam which is
focused onto the sample surface by the objective lens. The second beam is focused to the back focal plane of the
objective and is then collimated onto the sample surface by the objective lens. Upon reflection from the sample, the two
beams traverse through the system and interfere to form parallel fringes. The fringe spacing is determined by the lateral
offset of the hologram with respect to the optical axis, which alters the angle of the reference beam in the system.

As the object is scanned, local variations in surface height change the phase of the focused beam, whereas the average
phase of the reference beam will essentially remain unchanged. Amplitude and phase profiles of the object are built up
by recording the complex amplitude of the spectral component of the fringes at each scan location, by taking the Fourier
transform of the fringe pattern. Figure 3 shows a typical fringe pattern recorded at the CCD camera, and its Fourier
transform.

Figure 2: Optical arrangement of hologram and objective

Figure 3: Fringes Captured at CCD, Line though fringes, Fourier transform of fringes



The common path nature of the system ensures that the effects of microphonics will be greatly reduced increasing the
stability of the system and allowing operation close to fundamental limits. Both are critical considerations for the
application of this project

ANN

Artificial neural networks are made up of many interconnected nodes. The nodes are simple computational units
inspired by the biological neuron. Each neuron/node calculates the weighted sum of its inputs; this is the input into an
activation function, the output of which forms the input to the next node. The topography of the network makes it a
powerful computational device that has many applications. [7]

We use a feed forward network, which consists of an input layer a hidden layer and an output layer. Each layer is fully
connected to the preceding layer as shown in figure 4. When in normal operation the network feeds the inputs to the
hidden layer, the outputs from the hidden layer become the inputs to the output layer. The output from the final layer,
for our application, is related to the trackwidth of the input object.

Our network typically uses 8 inputs, 5 hidden nodes and 1 output node. The activation functions are hyperbolic tan
functions. The network is trained using a training rule based on the Levenberg/Marquart[8] method as this produces fast
reliable training.

The topography of the network was obtained by trying different network configurations with both simulated and
experimental data and choosing a structure that produced reliable and repeatable results. As the network is only
calculating one parameter the number of hidden nodes should be some where between the number of input and output
nodes[9]. There is only one output node corresponding to the track width. Using eight inputs produced the best results
for our data, too few nodes and the network was unable to train well and the errors were high, increasing the number of
inputs not only slowed down the training process considerably but also did not improve and often degraded the training.
Similarly using too few hidden nodes meant the network error was high and training was unreliable. Using too many
hidden nodes again made the network difficult and time consuming to train and in some cases performed less well. The
final selection of 8-5-1 took all of this into consideration and work equally well on both simulated and experimental data
although similar topographies also work well.

The ANN is trained using a set of training data derived from the optical profiles and their known width values as
training targets. The input patterns are presented to the network and an error value is calculated. This is back propagated

Figure 4: Schematic of Artificial Neural Network



through the network to update the weight values so that the overall error decreases. When the error no longer decreases
the network finishes training and can be used to calculate the track width of previously unseen tracks.

The input patterns presented to the network are obtained from the optical profiles produced by the optical system after
some processing. The profiles are first differentiated then their Fourier transforms taken. Then the spectral components
in the pass band are sampled at 8 equally spaced locations and are used as the inputs to the ANN. The targets for each
profile are scaled to fit into the output range of the output layer activation function.

The format of the input data is very important. Several different schemes were tried such as using the optical profile
directly and using the Fourier transform of the optical profile both produced poor training results. Finally differentiating
the data was tried as this would suppress the low spatial frequency components and enhance the high frequency
components. The high spatial frequency components have proved to be the most important for changes in shape of the
tracks as the track width reduces. This produced good training results, essentially because a lot of unimportant
information was removed in the differentiation process.

Due to the limited number of distinct tracks on available samples, an early stopping technique and jittering [10] are used
to help the network remain general. The network monitors the error in the testing set during training and training is
stopped if the error of the testing set increases. If the error increases in the testing set but continues to decrease in the
training set then the network has started to over train and memorise the training patterns.

RESULTS

A silicon sample comprising of 23 tracks in the range of 60-480nm has been measured. The tracks were etched in a
silicon substrate and the height of each track was 45 nm. The tracks were separated by 60 microns. Each track was
measured 4 times to build up a set of training patterns for the ANN. The numerical aperture of the optical system was
0.3 and the wavelength used was 633nm.

All of the available tracks on this sample were measured and divided into training and testing sets. 75% were picked at
random to form the training set and the remaining used for the testing set. All of the tracks were processed as described
in the previous section. Figure 5 shows the departure from the target value and the network output, the standard
deviation across the range of 60-480nm is 2.5nm. The smallest track measured (60nm) is 42 times smaller than the point
spread function of this system, which in this case was 2.6microns.

Figure 5: Experimental results



To confirm the general nature of the trained network, training was repeated but with two tracks removed from the
training process. Upon completion of the training, the network was applied to the two tracks originally omitted. Figure 6
shows the differences between the network response and the target value for the training, testing and the omitted tracks.
The results for the omitted tracks are similar for the rest of the input tracks showing that the network is general.

Another network was trained where the last track was left out of the training process. This illustrates the point that the
network can only provide accurate values of the track width for the range of tracks it was trained on. Appling data for a
track width outside of this range will produce a dramatic increase in the difference between the network output and
target value. This is clearly shown in figure 7 where the deviation from the target value increases from around 3nm to an
around of 30nm for the out of range track.

Figure 6: Experimental results showing generalized nature of network

Figure 7: Experimental results showing out of range response



Figure 8 shows the effect of training with fewer input points. In this example the input data contained three points, one
from the low spatial frequency end, one from the middle and one from the high frequency end. These were used to train
an ANN and the network output deviations from the targets values are plotted below. The standard deviation for this
example is 5nm. This has increased by a factor of two over the 8 input training case

Another network was trained where the high frequency point from the set of three input points in the above example had
been removed. This greatly reduced the performance of the network and the standard deviation of difference between
the network response and the targets increases to over 10nm. This increase is due to two effects, firstly training with less
input points and secondly the high spatial frequencies are very important for producing good results as the high
frequencies are where the effects of reducing the track width are most prominent. More work is being carried out on the
importance of the spatial frequencies and the number of inputs used to train the ANN.

The limit of this technique has yet to be met, as the 60nm track is the smallest feature we have available to measure. By
increasing the objective NA and using a shorter wavelength we believe it should be possible to measure track widths
down to 10nm.

Due to the success of this system when dealing with single tracks, we have considered extending its use to multiple
track objects. Computer simulations of this shows that this technique is appropriate for obtaining both the track width
and separation for a double track structure, experiments are underway to confirm this.

The possibility of a more suitable optical system is being considered with the aim of providing the differentiation
optically.

MORE HERE?

CONCLUSIONS

A combined system of an ultra stable common path interferometer and artificial neural network for line width
measurement has been presented. Tracks widths down to 60 nm have been measured with a numerical aperture of 0.3
and optical wavelength of 633nm.

This technique has proven to be very powerful in extending the capability of the optical system for the application of
track width measurement. The solution obtained by the ANN is general in that any other widths in the trained range
produce similar error levels. However for this system to be useful for providing standard measurements work regarding

Figure 8: Training with fewer inputs



the uncertainty of the optical system and the ANN needs to be carried out. This is not trivial with regards to the ANN as
discovering what the ANN is actually doing is not straightforward.
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