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We have demonstrated recently that, by using an ultrastable optical interferometer together with
artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective
lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show
the characteristics of the training samples and the data format of the ANN inputs required to produce
suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying
different structures, will be presented to illustrate the capability of the technique. We include a
discussion on expansion of the application areas of the system, allowing it to be used as a general
purpose instrument. © 2007 Optical Society of America
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1. Introduction

In a recent publication [1] we introduced what we be-
lieve is a novel technique for optical linewidth mea-
surement. The technique makes use of an ultrastable
scanning optical interferometer to generate profiles of
the samples. Artificial neural networks (ANNs) are
then applied to the profiles to extract the desired pa-
rameters: track width and track separation. Using an
optical setup with a point spread function of 2.6 �m in
diameter �NA � 0.3, � � 0.6328 �m), we successfully
measured linewidths down to 60 nm, with a repeat-
ability better than 2 nm. We will present new results
that show the characteristics and capability of the
system. In particular, we will demonstrate the flexi-
bility of the technique and show that it can provide
accurate measurements under various experimental
conditions. We will also consider aspects that are
critical for the future development of the technique.

Optical techniques have been the mainstay of criti-
cal dimension (CD) measurements for many years [2].
Optical systems are noncontact and nondestructive.

They are reliable, easy to use, and relatively inexpen-
sive. The use of monochromatic illumination enables
measurements that can be related traceably to the
international recognized standard of length, the meter.
All these factors have made them the instruments of
choice for CD measurements. The situation, however,
has changed dramatically in recent years. Due to ad-
vances in semiconductor technology, feature sizes have
decreased rapidly and structure dimensions below
100 nm are becoming common. These small features
are beyond the capabilities of conventional optical
systems, and techniques such as atomic force micros-
copy (AFM) and scanning electron microscopy (SEM)
are now regularly employed for these measurements.
Although their lateral resolutions are not matched
by optical systems, they do not possess many of the
attributes associated with the optical systems: non-
contact, direct traceability, and nondestructive.
Therefore, there has been much research on extend-
ing the measurement capabilities of optical sys-
tems.

Many approaches have been proposed to tackle this
problem, with the aim of increasing the effective band-
width of the system [3–6]. The amount of improvement
achieved in practice, however, has been negligible. Al-
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though the suggested techniques have a solid mathe-
matical basis, there are also obstacles that are difficult
to overcome.

Consider an optical imaging system, its output v�x�
related to the input u�x� and the system impulse re-
sponse h�x� through the convolution integral

v�x� ��
��

�

rect��

T�u���h�x � ��d� � n�x�

��
�T�2

T�2

u���h�x � ��d� � n�x�

and rect�x� � 1 for �x� 	
1
2

� 0 otherwise, (1)

where T is the width of the object, and n�x� the noise
associated with the image. A one-dimensional (1D)
amplitude system is shown for simplicity. To extract
object information originally outside the bandwidth
of the microscope, two steps need to be taken: (1)
deconvolve the output v(x) from the impulse re-
sponse, and (2) extend the resulting spectrum beyond
the original system bandwidth. The main concern
regarding the deconvolution is the amplification of
noise, which is inevitable if an inversion filter is used.
A Wiener filter, although preserving the signal-to-
noise ratio (SNR) of the original image, will result in
a modified transfer function, thus leading to error in
the extended spectrum [7]. Regarding spectrum ex-
tension, an important consideration is what we be-
lieve is the uniqueness of the extended spectrum.
Toraldo di Francia [8] showed that it was possible for
two different objects to produce identical images (and
hence identical spectra). This ambiguity could be re-
moved, Toraldo argued, if prior knowledge of the ob-
ject was available [9]. Wolter [10] and Harris [3]
showed that this knowledge could be the object size
being finite. This is because the Fourier spectrum of
a spatially bounded object is an analytic function, and
by applying the principle of analytic continuation
[11], we believe that a unique extension of the spec-
trum can be obtained.

Many researchers have investigated the effects of
noise on the extension of the effective bandwidth.
One model makes use of the information theory [12–
14] and concludes that the information content N
associated with any particular object profile is fixed,
with its value proportional to the number of data
points, the spatial (and temporal if appropriate)
bandwidth, and the SNR of the system. The profile
may be processed to trade one parameter with an-
other, but the value of N cannot be increased. Al-
though the effective bandwidth of a profile may be
extended beyond the classical limit, it can only be so
at the expense of other parameters. In a series of
publications, Slepian and co-workers [15–17] demon-
strated that Eq. (1) can be represented using the
prolate spheroidal wave functions. Based on these

functions, Rushforth and Harris [18] showed that the
error of the extension process increased nonlinearly
with the number of eigenfunctions included in the
reconstruction, and regardless of the characteristic of
the optical system, large noise amplification would
result even for a small extension of the system band-
width. Many different methods have been proposed
for extending the bandwidth, but the actual exten-
sion achieved has been extremely limited. One suc-
cessful implementation of spectrum extension is in
Fourier transform infrared spectroscopy. It was re-
ported that, by using an autoregressive model and a
singular value decomposition, an eightfold increase
in the signal length was achieved [19]. This, perhaps,
is not surprising, as the signal in question consisted
of a small number of sine waves only.

We tackle this problem from a different angle. In-
stead of attempting to extend the effective bandwidth
of the system, we aim to measure accurately the di-
mensions of the sample. Based on these measure-
ments, we can build up a clear picture of the sample.
The advantage of this approach is that we do not need
to perform deconvolution of the signal, thus avoiding
amplification of the system noise. In addition, the
measurements of individual parameters of the object
do not require full extension of the bandwidth, thus
avoiding the severe degradation in the SNR of the
system.

In Section 2 we will briefly recap the technique we
reported previously. This will be followed by the pre-
sentation of results, showing both the measurement
capability and the characteristics of the system. In
Section 4 we will discuss future work necessary to
allow the system to be used as a routine measure-
ment instrument, and also to increase its application
areas. Our conclusions are presented along with an
Appendix.

2. Optical System and ANNs

The technique can be divided into two parts: an op-
tical section that is capable of producing extremely
repeatable profiles of very high SNR, and a signal
processing section that is constructed specifically for
our application. We will discuss the signal processing
algorithm first, as its requirements will define the
specifications of the optical system.

The signal processing technique we use is the
ANN. It is a feed forward single layer perceptron [20].
Networks of this type have been shown to be espe-
cially suitable for extracting small changes in the
input signal [21]. The measurement concept is sim-
ple: the optical system will provide a profile of the
sample under test. The profile, after suitable signal
conditioning, is fed to an ANN that has been trained
for the particular application. The output will be the
object parameter desired.

The training process involves repeatedly exposing
profiles of known objects to the ANN. At each cycle,
the weights of the nodes are adjusted to reduce the
errors between the network outputs and the target
values of the profiles. Figure 1 shows the training of
the ANN in block diagram form. Details relating to
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the training of the ANN for our applications can be
found in Ref. 1 and are summarized in Appendix A.

The important properties that the optical system
should possess are high stability, high SNR, and the
ability to produce both amplitude and phase profiles.
The first two are obvious and are properties de-
manded for good optical instruments. The third prop-
erty would allow the system to examine different
types of samples, such as chrome on glass structures
or etched features on homogeneous substrates. The
system we use is one that we developed previously
[22], which is a scanning interferometer. It makes use
of a computer generated hologram as the beam split-
ter, which allows the two interfering beams to travel
along a similar path. The effects of microphonics and
thermal gradients of the surrounding are therefore
greatly reduced. Due to the special detection method
used in the system, the interferometer has a very
high SNR. The number of detected photons per scan
point can reach 2 
 109 and is ideal for the present
application. In the next section, we will present re-
sults showing the measurement capability of the sys-
tem, and also demonstrate the characteristics of the
technique.

3. Results

The experimental results presented here were ob-
tained using the scanning interferometer described
above. The objective was a 10
�0.3 NA Zeiss Epiplan
and the laser was a helium–neon �633 nm�. The di-
ameter of the point spread function (PSF) at the sam-
ple surface was 2.6 �m. The sample stage was a
Physik Instrumente P-517.3 piezoflexure nanoscan-
ner with capacitor position sensors and had a reso-
lution of better than 1 nm. The measurement
procedure has been described in a previous publica-
tion [1] and will not be repeated here. A number of
samples were used in the experiments, and their
specifications are given in Table 1. The results can be
divided into two groups. The first will show the mea-
surement capability of the technique, and the second
will illustrate important characteristics of the sys-
tem.

A. Track Width Measurements

Two types of feature were tested: single isolated
tracks and double tracks of various widths and sep-
arations. Single track results similar to those pre-
sented here have been published before [1], although
they were obtained on different samples. The new
measurements presented here show better repeat-
ability compared to previously reported results with
an improvement approaching a factor of 2. Apart
from those contained in Subsection 3.A.1, results pre-
sented in this paper have not been published before.

1. Single Tracks
Two samples were used. The first (Community Bu-
reau of Refere sample) comprised a series of chrome
lines on glass and was a standard produced as part of
an international collaboration between national mea-
surement institutes [2]. Lines with widths in the
range from 0.27 to 2.1 �m were scanned. The second
sample was a silicon sample with a series of tracks
with widths in the range from 60 to 480 nm etched in
its surface. As well as covering a different range of
track widths, the samples also allowed us to test the
system performance on amplitude and phase data.
Details of the samples used are given in Table 1.

The two samples were scanned with the optical
interferometer. According to the procedure described
in Appendix A, each track was scanned four times to
make up the training and testing samples. Two
ANNs were trained, one for each sample. Figure 2
shows the differences between the ANN outputs and
the targeted track widths. The crosses represent data
from the training set and the circles the testing set.

The measurements are summarized in Table 2.
The repeatability is the standard deviation calcu-
lated for the entire set. The smallest track, being
60 nm, is less than 1�40th of the focal spot diameter.
The repeatability is even more impressive, being
smaller than 1�1000th of the PSF. It should be noted
that the 60 nm track does not represent the limit of
the system and is merely the narrowest track avail-
able to us. Indeed, the samples were measured using
a 5
�0.13 NA objective, and results of comparable
repeatability were obtained.

These two samples were measured repeatedly un-
der different conditions. Similar results were ob-
tained each time. Based on these measurements, we
predict that, by using an objective of higher NA and
a laser of shorter radiation wavelength, measure-
ment capability for linewidths in the 10 nm region
should be achievable.

Fig. 1. Training of ANN using samples of known dimensions and
the back propagation algorithm.

Table 1. Samples Used in the Experiments

Sample Type Track Widths Comments

Si Single tracks, edged Si substrate 60–480 nm Track separation: 60 �m, width not
calibrated

BCR Single tracks, Cr on glass 0.27–2.1 �m Track separation: 20 �m, width
calibrated by NPL

Chrome Single and double tracks, Cr on glass 1–3 �m Separation of double tracks: 1–3 �m

1 August 2007 � Vol. 46, No. 22 � APPLIED OPTICS 4859



2. Double Tracks
The chromium sample that contained double tracks
was measured. The widths of the individual tracks
ranged from 1 to 3 �m with separations up to 4.8 �m.
Each double track was measured three times and in
total there were 162 double tracks to use for training.
Because of the relatively large dimensions of the fea-
tures, the NA of the objective lens was stopped down
to 0.11. Two networks were trained: the first was a
single network containing two outputs, one for the
widths and the other for separations; the second con-
tained two ANNs, one trained to measure width and
the other separation. The objective of this exercise

was to investigate the ability of the ANN in measur-
ing multiple parameters.

Figure 3 shows the results obtained with the sin-
gle network with two outputs, and the results are
summarized in Table 3. As can be seen from the
figure, there were a number of poorly performing
tracks in the testing set. This is probably because
although there were many samples, they covered a
large range. The samples that were poorly mea-
sured corresponded to regions that were inade-
quately covered.

The same set of samples was measured again, but
this time with two ANNs, one trained specifically for
track widths and the second for separations. The re-
sults are included in Table 3. Compared to the pre-
vious case, much better repeatability is shown. These
results would be improved further if the number of

Fig. 2. Measurement repeatability: (a) BCR sample and (b) Si
sample.

Table 2. Measurement Repeatability for the BCR and Si Samples

Sample

Measurement
Repeatability in
nm, Standard

Deviation
Spread wrt

psf
Smallest Track

wrt psfTraining Testing

BCR 2.2 1.9 1:1370 1:10
Si 0.7 1.8 1:1440 1:43

Fig. 3. Measurement repeatability of double tracks. One ANN
with two outputs: (a) track widths and (b) track separations.

Table 3. Measurement Repeatability for Double Tracks, Showing
Percentages of Point Spread Function

One Net Two Outputs
Two Nets Each One

Output

Width nm (%) Sep nm (%) Width (%) Sep (%)

Std train 17.3 (0.25) 13.4 (0.19) 5.20 (0.07) 3.42 (0.05)
Std test 25.4 (0.36) 14.5 (0.21) 9.52 (0.14) 9.29 (0.13)

4860 APPLIED OPTICS � Vol. 46, No. 22 � 1 August 2007



examples of width and separation included in the
training set was increased.

B. System Characteristics

The single track results shown above were obtained
with networks trained under ideal conditions, in the
sense that the training samples were of known di-
mensions and were uniformly spaced over the mea-
surement range. Next we examined the behavior of
the networks when this is no longer the case.

1. Missing Tracks Left Out at Random
To simulate the situation where the training samples
did not uniformly cover the measurement range, we
used the Si sample results from Subsection 3.A.1 and
randomly left out two tracks from the training set.
After the training, the network was tested with the
full data set, including the tracks omitted originally.
From the result shown in Fig. 4 it is clear that the
errors introduced by omitting the tracks (100 and
240 nm) are no greater than for the rest. This shows
that the network produces a general model of the
input–output relationship, and that the ANN should
be able to measure samples that are not originally in
the training set.

Further tests were carried out to investigate the
effects of missing tracks. These included the omis-
sions of one, two, and more tracks from the training.
All tests were performed using the results obtained
from the Si sample as described in Subsection 3.A.1.
The findings are summarized as follows:

Omitting one track: The point of this exercise was
to examine the effects of the locations of the missing
tracks on the ANNs. The procedures of the simula-
tions were:

Y Poisson noise was added to each of the 21 pro-
files, so that the noise power was double that of the
original levels;

Y A network was trained with track 2 (80 nm
wide) omitted;

Y The network was then applied to all 21 tracks,
and the repeatability for each track was recorded;

Y The above was repeated 200 times, each with
different sets of Poisson noise, resulting in a distri-
bution of the repeatability;

Y The entire process was repeated for tracks 3–20.

The addition of the random noise was to ensure
that the outcomes were general. The results are pre-
sented in Table 4, with the top row showing the lo-
cation of the missing track; the second row showing
the repeatability of the measurements over the 200
runs for the particular missing track; the measuring
third row is the repeatability of all 21 tracks for each
run, then averaging them over the 200 runs; and the
fourth row containing the differences between the
second and the third rows.

From the results shown in Fig. 5 one can observe
that the variation over the range is relatively small,
indicating that the effects of the locations of the miss-
ing tracks are not significant.

Omitting two or more tracks: This was similar to
the last case, but for two or more missing tracks. In
this case, 500 runs were used instead of 200, and for
each run the locations of the omitted tracks were
selected randomly. For each number of omitted
tracks, the errors were averaged. The results ob-
tained are shown in Fig. 6 and Table 5. Not surpris-

Fig. 4. Measurement repeatability with two tracks (100 and 240
nm) omitted from the training set.

Table 4. Effects of the Locations of Missing Tracks on the ANNs. See Section 3.B.1

Nmt 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SDt 0.216 0.198 0.122 0.105 0.131 0.123 0.152 0.187 0.145 0.157 0.116 0.084 0.119 0.117 0.107 0.101 0.128 0.116 0.114
MEc 0.14 0.14 0.115 0.104 0.118 0.111 0.107 0.12 0.123 0.12 0.11 0.106 0.121 0.105 0.105 0.108 0.106 0.087 0.102
Dif 0.076 0.058 0.007 0.001 0.013 0.012 0.045 0.067 0.022 0.037 0.006 �0.022 �0.002 0.012 0.002 �0.007 0.022 0.029 0.012

Fig. 5. Effects of the location of the omitted track on the mea-
surement repeatability. “*”: error associated with the omitted
track; “X”: average error of the entire network; and “�”: the dif-
ference between the two.
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ingly, the errors increase as does the number of
omitted tracks. Note that the average values have
been taken over 480 runs instead of 500. This is
because not all the networks could be trained suc-
cessfully. For cases of a small number of omitted
tracks, only one or two networks failed to train. For
the case of 11 omitted tracks, 15 networks failed.
They were removed before the averaging was taken.
Another point observed from the test was that the
failed networks usually occurred when the omitted
tracks were grouped together rather than being
spread evenly over the range.

C. Out of Range

The networks that have been trained will only be valid
for tracks that fall within the ranges. This is demon-
strated in Fig. 7, where the network was trained on the
range of 60–460 nm, and then the trained network
was applied to the 480 nm tracks. The error, both the
mean and the standard deviation, for the 480 nm
tracks was considerably higher. Similar results were
obtained when the 60 nm tracks were omitted from
the training. These results, together with the previ-
ous one on omitting tracks inside the training range,
demonstrate that these networks are very good at
interpolation across the training range but are un-
suitable for extrapolating outside the training range.

D. Input Point Locations

The format of the input signal to the ANN is critical
to the performance of the network. Both the normal-
ized object profiles and the spectra of the profiles were
used as the inputs to the ANNs. Although networks
were trained successfully, the measurement spreads
were greater than 50 nm. The inputs used for the
ANNs shown above are the spectra of the differential

profiles of the objects, and the repeatability is now
typically around a couple of nanometers. It can be
argued that, for measuring widths and separations,
low spatial frequency components have little to con-
tribute. By differentiating the profiles, the effects of
the mid- to high-frequency components are enhanced.

Figure 8(a) shows a typical input to the network,
which has 36 sample points within the passband of

Fig. 6. Effects of number of omitted tracks on measurement
repeatability.

Table 5. Measurement Repeatability (MER) (over 480 Runs) as
Functions of the Number of Tracks (NTO) Omitted

NTO 1 2 3 4 5 6 7 8 9 10 11

MER (nm) 1.9 1.9 1.9 2.0 2.0 2.0 2.2 2.3 2.4 2.7 3.1

Fig. 7. Measurement of sample outside of the training range.

Fig. 8. Effects of the locations of the input patterns to the ANN,
(a) possible input points for the ANN; and (b) measurement re-
peatability using different combinations of input points.
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the system. The results shown above were obtained
using eight equally spaced sample points as the net-
work inputs, and they are points 1, 6, 11, . . . 36. To
investigate the influence of the locations of the input
points, we trained a series of networks with different
patterns of the input locations. Eight patterns were
tested, and the results are shown in Fig. 8(b), where
the patterns are arranged in descending order of the
error levels.

It is obvious from the figure that high-frequency
components are essential for precise measurements
of the samples. It is interesting to observe that the
best result is obtained with all low-frequency compo-
nents omitted from the input. However, for different
types of measurements, different input formats will
be required. For example, if the track height is also a
variable, a uniformly spaced input may be more ap-
propriate for the network. It is therefore important to
keep in mind that one input format will not suit all
possible applications. The results shown in Fig. 8 are
summarized in Table 6.

E. Removal of Incorrect Targets

Unlike human brains, the ANNs used here do not
possess any understanding of the problems that are
being tackled. The ANNs learn to solve a problem
through a set of rules imposed by the learning algo-
rithm. The target values used in Fig. 1 are the track
widths normalized to within a range of 0.2 to 0.8 (the
range of the output node is �1:1). Once an ANN is
trained, its measured values can be converted back to
physically meaningful, and hopefully accurate, values.

Consider the situation when one or more of the
target values are incorrect. Instead of being exposed
to a training set that possesses a certain logical pat-
tern, the ANN is presented with one that contains
faulty information. Under this condition, the ANN
will return a large error. Figure 9(a) is a simulated
result using the data from the Si sample. The target
value of sample 11 was deliberately increased by 5%
before the training. The effect of this on the training
outcome is obvious, and that sample returns a very
large error. In addition, the overall performance of
the network has degraded significantly. Such a dra-
matic effect can also be used to solve the problem. By
inspecting the error profile of the training set, train-
ing samples that return errors beyond a certain value

can be removed. The remainders are then used to
train a second network. The situation is now similar
to the missing tracks discussed above, and good qual-
ity networks can be expected.

Alternatively, those training samples with incor-
rect targets can be left with the other training sam-
ples, and a correction routine is used to reduce the
error. The procedures of this correction routine are:

Y Use the available data�target values to train a
network as normal;

Y Calculate the standard deviation error of the
entire network, Enet;

Y Locate the sample Sx that has the largest stan-
dard deviation error, Esam;

Y Adjust the target value of sample Sx by �E,
where �E � Esam � Enet;

Y Repeat training with the updated data set; and
Y Repeat the process until the error is acceptable.

Essentially, the routine looks for any outliers in
terms of errors, and adjusts their values until the
errors for all individual samples are within a certain
bound, which can be determined through SNR con-
sideration of the system. Figure 9(b) shows the ap-
plication of the routine to the data used for Fig. 9(a).

Table 6. Measurement Repeatability for Different Input Patterns to
the ANN

Pattern Type Input Locations
Standard Deviation

in nm

1 1 20 20.6
2 1 35 15.6
3 1 4 8 12 16 20 12.6
4 10 14 18 22 26 30 8.0
5 20 35 6.7
6 1 20 35 5.6
7 1 5 10 15 20 25 30 35 4.3
8 20 24 28 32 36 2.8

Fig. 9. Effects of incorrect target values: (a) measurement repeat-
ability when a 5% error was imposed to one of the target value; and
(b) the effects of the autocorrection routine on the measurement
repeatability.
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The first row, R1, is the same as Fig. 9(a). Four iter-
ations of the routine have been applied, with R2–R5
being the outcomes. The baselines of the four have
been shifted for clarity.

It is important to point out that the autocorrection
routine does not provide a more accurate network
compared to simply removing the incorrect samples
from the training. A possible advantage of the auto-
correction routine is that it may yield networks with
acceptable performance when the number of incor-
rect samples is large. This is an area that requires
further investigation.

F. Classification

The results presented so far have shown the abilities
of the ANNs in measuring very small dimensions to a
very high degree of precision. For the technique to
work properly, however, we need certain knowledge
of the samples so that they can be presented to the
appropriate ANNs. This knowledge may be available
in some specialized areas. If, however, the system can
determine the nature of the object without depending
on prior information, the technique can become very
powerful indeed. In this section, we will present re-
sults showing a possible way of tackling this problem.

ANNs may be used as classifiers. A well-known
example is the unsupervised self-organizing network.
We have tested such networks and they produced
adequate results. We have found, however, that the
multilayer perceptron networks used in this project
so far are particularly suitable for this purpose. A
network, identical to the previous ones except for
having two outputs, has been trained to distinguish
between single and double tracks of various dimen-
sions. The output would return a value of 0.8 if a
double track is presented to the input, and 0.2 for a
single track. Using the chromium sample specified in
Table 1, we have trained one such network, and the
results are given in Fig. 10. As can be seen, the net-
work yields perfect classification. Through simula-
tions, we have found that ANNs work well even when
the samples are very similar to each other. For ex-
ample, it could distinguish a double track of 500 nm

width (each track) and separation of 50 nm, to a sin-
gle track of 1050 nm width. We have also successfully
trained networks to separate samples of different
structures. Since this aspect of the system is ex-
tremely important, it will be discussed further in the
next section.

4. Future Work and Conclusion

The new results presented in this paper build on the
previously reported results [1]. They demonstrate the
measurement capability, the robustness, and the tol-
erance of the system.

With the current setup, the system can measure
track width down to 60 nm with repeatability better
than 2 nm. By optimizing the optical arrangement, a
track width of less than 10 nm is well within the
capability of the system. To achieve this level of per-
formance, it is essential that the optical system
should have high SNR and high stability. Typically,
the system has an SNR in signal amplitude of around
3000:1. This is equivalent to a 9 
 109 detected pho-
tons per data point. For a scanning optical instru-
ment, this level of SNR is readily achievable.
Regarding stability, the system has a short-term drift
over the length of a measurement cycle of less than 1
part in 5000. Again, with a proper isolated system,
this stability can be improved further.

One rather surprising aspect revealed by the re-
sults is that, for such precise measurements, the
requirement on the training set is relatively non-
demanding. A good example is the coverage of the
training sample set over the measurement range.
Although it is not easy to determine exactly the
most appropriate coverage, results in Table 4 show
that there is a high degree of tolerance. Even if the
training targets contain errors, by using the auto-
correction technique described above, their effects
are minimized. The one weakness of the system is
that for an out of range profile, the error it produces
is enormous. However, there are methods that can
be implemented to overcome this problem, and they
will be discussed further later in this section.

While the results presented here demonstrate the
potential of the technique, further work is required
before the technique can be extended to provide trace-
able metrological results and also applied to samples
of different structures.

For metrological measurements the system will re-
quire a standard with which it can be calibrated. The
standard will be measured by a high resolution sys-
tem, such as an AFM or SEM. Training the network
attempts to match the optical profiles with these
measurements. Hence it could be argued that the
optical�neural net system is being trained to make a
“virtual” AFM (or SEM). To address the intrinsic un-
certainty of the optical system, several factors have to
be taken into account, such as the overall mechanical,
electrical, and software stability of the system. Con-
sequently, the uncertainty of the optical measure-
ments will always be greater than the uncertainty of
the AFM. For many applications, however, this in-

Fig. 10. Classification of single and double tracks.
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crease in the uncertainty is compensated for by the
many virtues of an optical system.

The overall system must be sufficiently robust not
only to provide valid results but also to recognize
when it is unable to provide a valid result. The idea of
calculating a confidence factor with each result has
already been described. This would indicate to the
user whether a result is suspect.

A limitation to the results that can be presented
here is the lack of suitable samples for training and
validating the system. In the ideal case a series of
finely spaced linewidth structures is required to dem-
onstrate not only the overall resolution of the system,
i.e., that sub-100 nm structures can be resolved, but
also a series of sub-100 nm linewidth structures with
an increment of a few nanometers is required to
demonstrate the overall performance of the system.
Furthermore, for training the networks, a series of
measurements is made at different points along a
single linewidth structure. This does not take into
account any variation in the width of the length of the
linewidth structure, although hopefully this will be
very small.

In the ideal case the system would be capable of
measuring several different parameters related to
the linewidth structure (e.g., sidewall angle and
roughness). The potential of the system for measur-
ing the width of double tracks also has been shown,
and development of this will lead to the possibility of
measuring periodic samples where the width and
spacing of the structures are important.

The key to expanding the application area of the
technique to features other than track widths and sep-
arations is being able to recognize the feature types of
the profile. We have conducted a series of computer
simulations on structures such as tracks with sidewall
angles, or tracks spaced in close proximity to each
other. It is clear that very precise measurements can
be made provided appropriate ANNs are used for the
profiles concerned. This is true for the type as well as
the range of the features, and is backed up from some
of the experimental results shown here. Obviously, if
we have prior knowledge of the sample, then matching
profiles with ANNs is not a problem. For many appli-
cations, this information is indeed available. Failing
that, some mechanism will be required to distinguish
between different samples. We will briefly discuss our
approach here. A detailed description will be given in
future publications.

The method we are exploring can be described as
match and sift. The profile produced by the optical
system is first compared to a series of templates, which
are obtained from standard samples. When necessary,
the comparison can have coarse and fine levels. Once
the sample type is determined, it can be divided into
different ranges before an ANN is applied to produce
the desired measurement. The matching and sifting
can be performed by a number of different techniques,
for example, principal component analysis and project
pursuit.

We have shown experimental results demonstrat-
ing the ability of our system to provide extremely

precise measurements. The demands on the optical
system can be described as moderate. If prior knowl-
edge of the sample is available, the capability of the
system is limited only by the quality of the signal,
both in terms of drift and noise level. If object infor-
mation is available, we can attempt to classify the
sample profile by using the methods described. From
preliminary investigation, this is an entirely feasible
approach to adopt. One drawback of the method is
that the application area is relatively limited since
successful operation depends on the availability of
the standard templates. On the other hand, the abil-
ity of the system can grow, since new templates can
be added to the system. Thus many more sample
types with more complicated structures can be mea-
sured. Although initially the system will require an
AFM or SEM to provide standard measurements, it
can be foreseen that one day all necessary templates
are built into the system and it will function on its
own.

Appendix A

The training of the ANN requires exposing the net-
work to a set of reference profiles. To produce the ref-
erence profiles, a set of samples of known dimensions
is needed. The values of the samples should cover the
measurement range of interest. The optical system is
then applied to the samples, producing a set of refer-
ence profiles with a set of target dimensions. In cases
of limited availability of the reference samples, a pro-
cess known as jittering may be employed. This in-
volves applying the optical system to the sample
set three to four times. The resulting reference set
thus contains identical profiles with slight variations
caused by random noise and experimental conditions.
The jittering process helps to generalize the training
of the ANN when the number of training samples is
small.

Once the training profiles are available, they are
conditioned before being inputted to the ANN. The
conditioning involves:

Y Removing the dc from the profiles;
Y Normalizing the profiles by equalizing the ab-

solute areas of the curves;
Y Differentiating the normalized profiles;
Y Selecting N number of points (usually eight)

from the spectra of the differential profiles, inside the
spatial bandwidth of the optical system; and

Y Using the magnitudes of the N spectral compo-
nents as the inputs to the ANN.

This data conditioning process is critical for the
working of the ANNs. Other conditioning methods
have been tried and none produced satisfactory re-
sults.

The training algorithm of the ANN is the well-
known back propagation method. The weights of the
network are initially assigned random values. The
data from the reference profiles are then presented to
the ANN, and the outputs are compared to the target
values. The error functions are back propagated
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through the network, and the weights are adjusted to
reduce the errors in a least mean squared manner.
The same set of training profiles is presented to the
ANN repeatedly until certain predefined criteria,
which may be the magnitude of the error or rate of
change of the error, are met and the process is ended.

We thank the Engineering and Physical Science
Research Council (UK) and the National Physical
Laboratory (UK) for supporting this research. Part of
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Length Measurement 2002–2005.
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