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Abstract
This paper discusses the feasibility of using artificial neural networks
(ANNs), together with a high precision scanning optical profiler, to measure
very fine track widths that are considerably below the conventional
diffraction limit of a conventional optical microscope. The ANN is trained
using optical profiles obtained from tracks of known widths, the network is
then assessed by applying it to test profiles. The optical profiler is an
ultra-stable common path scanning interferometer, which provides
extremely precise surface measurements. Preliminary results, obtained with
a 0.3 NA objective lens and a laser wavelength of 633 nm, show that the
system is capable of measuring a 50 nm track width, with a standard
deviation less than 4 nm.

Keywords: optical track-width measurements, artificial neural networks,
common path scanning interferometer

1. Introduction

Calibrated line width standards are an important tool for many
industries. Systems that are capable of providing reliable
measurements are therefore useful in many application areas.
One such area is in semiconductor industry, where the feature
size has been decreasing over the years, and has reached a point
that it is no longer possible to use traditional optical methods
to obtain meaningful measurements. Other techniques seek
to utilize shorter wavelength of radiation, including UV
microscopy and scanning electron microscopy; or scanning
near field techniques, such as atomic force microscopy, in
order overcome this problem. These systems possess very
fine lateral resolutions but they also suffer certain drawbacks:
they are expensive compared to an optical microscope; they
can be difficult to operate and particular care is needed
to prevent the samples from being damaged. In addition,
they are relatively slow and the data acquisition time can
be long if a large sample area is to be interrogated. In
this paper we will describe a technique, which combines an
optical interferometric profiler with artificial neural networks,
to provide track width measurements that are considerably
smaller than the point spread function of the optical system.

It should be pointed out that, at the moment, the technique
can only provide a single parameter, namely the track width,
and it does not yield the surface profile of the sample. In
its basic form, it can be used in conjunction with other
measurement instruments to perform rapid measurements of
samples. We are currently working to extend the application
of the technique, with the aim of extracting other parameters
relating to the shape of the samples.

The resolution of an optical system may be quantified
by using the Rayleigh criterion, which gives the resolution to
be half of the optical point spread function [1]. One can also
consider an optical system as a spatially invariant linear system
[2], and link its resolving power to the bandwidth of the system.
Figure 1 is a simple illustration of this point. Figures 1(a)
and (b) show the simulated responses of two tracks imaged
with a partially coherent optical microscope, with an NA of
0.3 and an optical wavelength of 633 nm. The widths of the
two tracks are 10 µm and 1.2 µm respectively. Figures 1(c)
and (d ) are the two corresponding image spectra, with the
dotted line showing the pass band of the optical system. In the
case of the 10 µm track, most of the significant frequency
components of the object is inside the bandwidth of the
optical system. This is clearly not the case with the narrow
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Figure 1. Simulated phase profiles and their spectra: (a) phase profile of a 10 µm track, (b) phase profile of a 1 µm track, (c) spectrum of
10 µm track and (d ) spectrum of 1 µm track.

Actual Width  

Measured Width 

Figure 2. Simulated data: measured track response as a function of
the actual track width.

track. Indeed, if we reduce the track width further, the image
produced by the system would remain substantially similar to
that of figure 1(b), and the object is considered beyond the
resolution limit of the system.

Figure 2 shows the simulated full width half maximum
(FWHM) of tracks as a function of the input track width for
the system described above, i.e. NA of 0.3 and wavelength of
633 nm. The dashed line represents the actual track width.
It is apparent that, when the track width is below a certain
value, the measurement would be much more sensitive to the
presence of system noise and is no longer reliable.

There has been much research aimed at overcoming the
diffraction limit, thus extending the measurement capability
of optical instruments. Many of these techniques seek to

reconstruct the high frequency components of the object
spectrum that are originally outside the bandwidth of the
optical system [3, 4]. The basis of these techniques is the
principle of analytic continuation [5], which stipulates that
from the knowledge of an analytic function over a finite
interval, the function over its entirety can be recovered [6].
It can be shown readily that the Fourier spectrum of a spatially
bounded object is analytic [4], so that the object spectrum
outside the system bandwidth can be reconstructed. The extent
of the spectrum extension that can be achieved depends on the
actual algorithm employed. It also depends critically on the
accuracy and precision of the captured image. The resolution
improvement that can be attained in practice is limited.

The problem of super-resolution has been studied using
the approach of information content [7], and the total amount
of information contained in a set of measured data is fixed.
Post-measurement improvement of a particular aspect of the
data, can only be achieved at the expense of other parameters.
Hence, extending the spectrum of the measured data will result
in a degradation, for example, of the signal-to-noise ratio of the
signal. This can explain the limited capability of the various
spectrum extension techniques. In contrast, since our aim is to
extract one parameter only, we can expect to achieve a much
greater improvement as will be demonstrated later.

In the next section, we will first state the general
properties of ANNs. This will be followed by a detailed
discussion of the networks constructed for this project. The
optical interferometer used for extraction of object information
has already been reported in an early publication [8]; so,
only the salient features of the system will be described in
section 3. The operating procedure of the system and
experimental results will be presented in section 4. The last
section will contain discussion of the technique and also the
conclusions.
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Figure 3. Layout of a simple feed forward artificial neural network.

2. The ANN approach

Artificial neural networks are biologically inspired
computational units, built around a simple model of the
neuron. They are arranged in groups to produce a network
of many computational units. ANNs have been used to
generate generalized models of input and target data in many
applications. For example image compression [9], modelling
complex process dynamics [10, 11], nonlinear time varying
systems [12], to name but a few.

There are different types of ANNs, which are usually
divided, according to the way in which they learn, into
supervised and unsupervised networks. Each category is
subdivided into sets of other networks that share similar
properties, for supervised learning there are feed forward,
feed back (recurrent) and competitive networks. Each have
their own advantages and disadvantages depending on the
application. Feed forward networks such as the multilayer
perceptron [13] have the advantage of being easy to train
and can approximate any nonlinear function given enough
processing elements; feedback architectures are good for
sequential behaviour problems, such as speech recognition
etc, but can be time consuming and difficult to train due to the
feedback loops.

The ANN used for our application is a feed forward
network, which has been shown to be particularly suitable
for extracting small changes of the input signal [14]. It has
an input layer, a hidden layer and an output layer. This is
illustrated in figure 3.

When in operation, a data pattern is presented to the input,
the network feeds the values through the network from front to
back, calculating the weighted sum of each input at each node.
This weighted sum is the input to an activation function, which
introduces nonlinearity into the network making the network
a much more powerful computational unit. The outputs are
fed to the next layer. At the output layer the value obtained, in
our case, is the track width of the presented input pattern.

The values of the weights are determined during the
training stage. This is achieved by presenting inputs and
their known outputs to the network. The weights are updated
by an iterative, least square error process known as back
propagation. The error at the output of the network is

(a)

(b)

Figure 4. Schematic of ANN in (a) training and (b) operation.

propagated backward through the system to the input, at each
layer, the weights are adjusted to reduce the overall error at the
output. This process is repeated until a predefined condition
is met. The way in which the weights are actually updated
depends on the training rule used. Both the feed forward
network and the back propagation algorithm are discussed
extensively in the literature, some can be found in the following
references [13, 15]. The operation of the ANN in both training
mode and normal use are shown in figure 4.

The number of training patterns and selection of network
size are important considerations. There are no hard and
fast rules for selecting these parameters due to the number of
factors that can influence network design e.g. training patterns
available, complexity of model, type of ANN, activation
function used, etc. In our case the number of inputs will depend
on the data type and will be experimentally determined. As a
general rule of thumb 30 times as many patterns as weights in
the network are required to reduce the chance of over fitting.

Over fitting, which is also known as over training,
is usually caused by having too few input patterns or an
overly complex network with noisy data. A properly trained
network produces a generalized model of the input and target
relationship. This means that it will produce valid answers for
any pattern presented within its training range even if it was
not contained in the training set. If a network has been over
trained, then a pattern that was not contained in the training
set will produce larger errors when presented to the network,
as the network has memorized the training patterns instead of
learning a general rule.

One method to avoid over fitting is to have a large data
set, having 30 times more patterns than weights in the network
should reduce the chance of over fitting, although this is not
always possible due to limited data sets. Other approaches can
be used to overcome this problem when the number of data sets
are a problem, such as correct model selection, early stopping,
Bayesian learning, weight decay and jittering (training with
additional noise) [16, 17]. It is difficult to quantify the number
of patterns required using these methods; however, by adopting
the early stopping and jittering approaches, we have trained
successfully with as few as 15 patterns.

The networks used for these measurements have typically
contained eight input values, five hidden nodes and one output
node. The node activation functions are tansigmoid functions
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(hyperbolic tangent in this case) [15] and the training rule that
was used is based on the Levenberg Marquardt optimization
rule [18]. This training rule provides faster training than
other methods such as simple gradient descent methods,
without compromising the reliability of the system. The
network layout was chosen because it provided repeatable
training and good results for our data, although other network
configurations may also perform well.

In our system, the patterns used for training the ANN are
split into two sets One set, normally 75% of the total, is used
for training the ANN. The remaining is used during training
as a validation set. As there are relatively few distinct input
patterns, due to the number of samples available, an early
stopping technique is employed. During the training process
the error in the validation set is monitored; if the trend of the
error increases the training is stopped, as an increase in the
error of the validation set implies that the network has started
to memorize the input/output patterns and lose generalization.

The format of the input data can critically affect the
performance of the ANN, and is application dependent. The
data format that is suitable for our system will be discussed in
section 5. In the next section, the optical system used for the
extraction of the object data will be presented.

3. The optical system

In order to ensure successful training of the ANN, the optical
system is required to produce profiles that are stable, of
high signal-to-noise ratio, and repeatable both in the short
and long term. A scanning interferometer is preferred since
many samples of interest are phase objects and do not present
variations in reflected intensity.

The system used to obtain surface profiles is an ultra stable
common path scanning optical interferometer. Because of the
common path nature of system, effects of microphonics due
to vibrations and thermal gradients are greatly reduced, thus
allowing the system to perform close to the shot noise limit.

The system uses a computer generated holographic (CGH)
diffractive element as the beamsplitter. The arrangement
between the objective lens and the hologram is shown in
figure 5. The CGH creates two output beams from a collimated
input beam. The first is an unaltered zero order which is
focused onto the sample by the objective, and acts as the sample
probe beam. The second is a first-order beam, converging to
the back focal plane of the objective. The objective then
collimates the beam onto the sample surface at some angle
depending on the lateral offset of the hologram with respect
to the optical axis, and this beam serves as the reference
beam.

The two returning beams are recombined by the hologram
and interfere to form straight fringes, the frequency of which
is set by the angle of incidence of the collimated beam at the
sample surface. Local surface height variations will change the
phase of the probe beam, whereas the average phase of
the reference will remain essentially unchanged. To extract
the surface information, the interferogram is recorded using
a CCD camera. Fourier transformation is then applied to the
interferogram. It can be shown readily that the phase and
amplitude of the sample are given by the Fourier component
due to the fringe frequency, and the profile of the surface

Interferogram

Imaging 

Zone  
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Objective lens

Object 

Illumination 

Object beam 

Reference beam

Figure 5. Light paths of the ultra-stable scanning optical
interferometer.

is obtained by scanning the sample. It should be noted that
the two light beams traverse the optical system through similar
paths, and the effects of microphonics will largely be cancelled
when the two beams interfere. This will improve the stability
of the system, and allows the system to perform close to its
fundamental limits. Both are critical considerations for the
application of this project. Figure 6 shows the image of the
fringes recorded by a CCD camera. The image was taken
using a wavelength of 633 nm and an objective of 0.3 NA.

An example of the use of the system is shown in figure 7,
where it was used to measure a 17 nm high and 40 µm pitch
phase grating. The phase profile was obtained by scanning
100 µm across the grating, and the high signal-to-noise ratio
for the system is clearly demonstrated. The signal-to-noise
ratio for the amplitude signal is around 3000:1 and the phase
noise has a standard deviation of around 0.5 mrad, both were
obtained in standard laboratory conditions.

4. Experimental results

4.1. BCR standard sample

The common path interferometer described above was used
to measure a line width standard, known as the BCR sample,
provided by National Physical Laboratory (NPL), UK. The
sample consisted of a glass substrate coated with a 100 nm
thick chromium. Thirteen tracks of widths from 0.273 µm
to 2.18 µm and length 20 µm were etched through the metal
layer. A thin layer of aluminium was evaporated to cover the
structure, thus making it a purely phase object. Each track was
scanned 6 times to build up a set of 78 phase profiles that could
be used for training and testing the ANN. It should be noted
that the profiles were selected randomly into the training and
testing sets, and therefore they might not cover the track width
range evenly. This random division process was adopted to
further ensure proper training of the networks.

Figures 8(a) and (b) show the phase profiles of two tracks,
with widths of 2.18 and 0.273 µm. Figures 8(c) and (d ) show
the corresponding phase spectra, where the dotted line is the
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(a) (b) (c)

Figure 6. Outputs from optical interferometer: (a) typical fringe pattern captured using the CCD camera, (b) line trace across the fringe
pattern and (c) Fourier spectrum of the fringe pattern. Object information is derived from the amplitude and phase of the sideband at
frequency fr.

Figure 7. Profile of a phase grating obtained with the scanning
optical interferometer, height = 17 nm and pitch = 40 µm.

pass band of the optical system. Throughout the experiment,
the wavelength used was 633 nm and the objective had a
numerical aperture (NA) of 0.3, giving a system resolution of
almost 1.3 µm. Each profile contained 500 scan points with a
scan increment of 40 nm

It is important that the signals are in an appropriate format
before they are used as the ANN inputs. The exact format
depends on the actual application. For this project, different
data formats have been tried, and the one described below
yielded the best results. The data processing procedure is:

• The data are normalized, using one of a number of
methods, which will be discussed below;

• The data are shifted so that the track is centred with respect
to the window;

• A Hann window [19] is applied to the data, in order to
minimize errors caused by edge effects;

• The function is zero padded to an appropriate length;
• The profile is differentiated before a discrete Fourier

transform is applied;
• The amplitude spectrum of the differentiated profile is

then sampled at eight equally spaced locations inside the
system bandwidth. The sampled values are then used as
the input of the ANN.

The critical steps of the above process are the last two
in the list. Different data formats have been tried as the
network input, including the profiles, the normalized profiles,
the differentials of the profiles, the spectra of the profiles and
the spectra of the differential profiles. The last one yields by
far the best results. This is similar to our experience when we
used ANNs to measure thermally induced micro-deformation
[14]. Again, using the spectrum of the differentiated data as the
network input produced the best results. As can be expected
from figure 1, it is necessary to represent strongly the high
frequency components, which will enhance the differences in
width between the narrow structures.

The other important factor is the number of input nodes.
It is found experimentally that the optimum number of input
nodes is around 8. If too few are used, the network could not be
trained successfully. If too many, the network would attempt
to memorize, rather than to generalize the measurement
situation.

The whole input data set is then scaled so that the
maximum value of all of the input points is 0.8, as this helps
the stability of the training. The same scaling was applied
to the target widths because the targets need to be in the range
of the activation function, which in this case is ±1. Using
a value of 1 for the scaled level can cause the network to be
unstable since in order for this value to be attained the input
into the activation function has to be infinity.

The target widths used in the training process were the
calibrated values obtained from measurements made at NPL
using the OPTIMM system for line width measurement [20].

The results obtained for this sample are shown in figure 9.
Each point on the graph represents the difference between the
track widths as measured by OPTIMM and the value provided
by the trained ANN. The crosses represent the training set
and the circles the validation set. The mean and the standard
deviation of the differences between the measured and the
true values are tabulated and shown in table 1. Also shown
are the maximum and minimum differences. The five rows
correspond to five different types of normalization procedures,
which are

(1) No normalization: the object phase profiles are processed
as described, and the values of the differential spectrum
are used directly as the ANN inputs;

(2) Normalized with respect to the peak of the phase profile:
before the processing of the data, the phase profiles are
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Figure 8. Phase profiles of the BCR sample and their spectra, obtained using the scanning optical interferometer: (a) profile, 2.18 µm track
width, (b) profile, 0.273 µm track width, (c) spectrum of (a), and (d ) spectrum of (b). Track height = 120 nm.

Figure 9. ANN results: BCR sample, error in standard deviation for
both the training and testing sets.

normalized so that individual profiles would have peak
values of unity;

(3) Normalized with respect to the sum of the absolute values
of the phase profile;

(4) Normalized with respect to the sum of the square of the
phase profile;

(5) Normalized with respect to the sum of the differential
spectrum.

From table 1, it can be seen that, in terms of standard
deviation, normalization type 1 and 4 produces the best results.
These results, together with the fact that eight input nodes
is the optimum number, indicate that the ANN is relying
on both the shape of the phase profile, as well as the total

amount of ‘energy’ each profile contained, to provide accurate
measurements, although more work is required in this area.
The results presented in this paper are all generated using the
raw phase profiles, with no normalization applied to the data.

Figure 9 shows that the errors are spread evenly over the
entire track width range, moreover the errors in the test data
while worst than the training data are not substantially inferior.
The lateral resolution of the optical system, according to the
Rayleigh criterion, is 1.3 µm. This compares to the narrowest
track width of 0.273 µm. A measurement precision of less
than 5 nm standard deviation demonstrates the capability of
the technique.

4.2. Measurement of silicon sample

A second sample of purely silicon tracks, with widths from
60 nm to 480 nm in steps of 20 nm and height of 45 nm
was also measured. The configuration of the optical system
was kept unchanged from the configuration used for the BCR
sample, with an optical wavelength of 633 nm and an objective
NA of 0.3. The normalization procedures used are the same
as for the BCR sample discussed above. The results of the
training are shown in table 2, and figure 10 shows the spread
of the error.

Once again, normalization type 1 and 4 produce the best
results. However, the magnitudes of the errors are even smaller
than the other set. This may be attributable to the cleanliness
of the sample. The narrowest track on this sample has a width
of 60 nm, which is some 22 times smaller than the resolution
limit of the system! It should be pointed out that 60 nm is not
the limit of the capability of the technique, but rather, it is the
narrowest track available to us.

For both samples, the amplitude profiles of the tracks
were also used to train ANNs. The resulting ANNs produced
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Table 1. Results for BCR sample, all values in nm.

Training Validation Peak error

Norm type Std error Mean error Std error Mean error Min Max

1 2.19 0.03 4.25 0.59 −5.92 6.67
2 9.53 5.62 10.86 0.16 −17.94 20.51
3 8.57 −1.23 16.62 2.03 −23.85 26.47
4 6.18 2.56 3.28 2.15 −8.09 15.09
5 6.23 −1.39 14.55 −0.12 −21.14 22.23

Table 2. Results for silicon sample, all values in nm.

Training Validation Peak error

Norm type Std error Mean error Std error Mean error Min Max

1 1.22 0.25 2.57 0.69 −3.13 4.91
2 10.03 −3.79 14.49 −1.48 −25.33 22.89
3 11.67 0.54 16.38 −3.19 −30.90 25.80
4 1.83 −0.14 5.95 2.76 −4.37 13.62
5 19.08 9.63 23.25 11.02 −37.93 55.47

Figure 10. ANN results: Si, error in standard deviation for both
training and testing sets.

errors several times greater than those obtained from the phase
profiles. This is hardly unexpected as the amplitude profiles
were merely due to scattering at the edges of the shallow
tracks.

4.3. Tolerance of the ANNs

In order to investigate the tolerance of the ANNs to the input
data, the training of the ANNs has been altered. With the two
examples shown above, the widths of the tracks in the training
were nominally the same as those in the testing sets. Other
networks have been trained, with up to three different tracks
omitted from the training. When the networks were applied
to the complete testing sets, results similar to those shown in
figures 9 and 10 were obtained. The one exception was when
the omitted tracks were at the ends of the range, where much
larger errors were resulted. This is essentially a reiteration that
ANNs are very good at interpolation but generally rather poor
at extrapolation.

5. Discussion and conclusions

In this paper, we have described the use of an ultra-stable
scanning interferometer and artificial neural networks for
accurate and precise measurements of track widths that are
substantially smaller than the resolution limit of the optical
system. With a 0.3 NA objective lens and a laser wavelength of
0.633 µm, track widths in the region of 50 nm can be measured,
with an uncertainty less than 3 nm. It should be noted that this
value includes error associated with the technique, variations
in the line widths of the samples, and the precision of the
scanning stage. The stage used in the optical system was
the x–y piezo flexure nanopositioner with capacitive sensors
(P-731.20), with a stated resolution of less than 1 nm. Work is
underway to incorporate an interferometer to the system. By
monitoring the movement of the stage with the interferometer,
the measurement precision should be further improved.

In order to train a network successfully, the input data
must be of very high quality. This demands the optical system
to produce repeatable measurements that are of high signal-
to-noise ratio. Departure from these conditions will result in a
spread of the error, and in some cases, may cause the training to
fail. The ultra-stable scanning interferometer employed in the
system meets these demands. The common path nature of the
interferometer renders the system insensitive to microphonics
and low frequency changes in the environment. Indeed, the
results shown above were obtained with the system located in a
general laboratory, without any specific measures to isolate the
system from the surroundings. By operating the system in a
more controlled environment, together with using a higher NA
objective lens and shorter laser wavelength, we are confident
that the performance of the system can be improved further.
Accurate measurement of track widths in the region of 10 nm
is a distinct possibility.

In section 4, we have discussed the effects of the various
normalization methods on the operation of the ANNs. It has
been found that, for pure phase tracks, the spectra of the
differential profiles are most suitable as the network inputs, and
no normalization is required. We have trained networks with
different input patterns. These include reducing the number
of input nodes, and also using only a portion, rather than the
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whole spectrum as the inputs. It is found that the scheme used
for the experiments above, eight points spread evenly over the
spectrum, provided the most precise and reliable results. This
suggests that the networks require both the height information
contained in the profiles, as well as changes in the relative
amplitudes of the high spatial frequency components.

As mentioned before, the technique only provides one
single object parameter. It relies on the existence of a set of
known samples, which may be obtained with the help of, for
example, an AFM. Since AFM data would be used to train the
neural networks, the system described here could be thought of
as a low cost virtual AFM. Consequently, it is envisaged that, in
its current form, the system will provide rapid and precise track
width measurements and will be ideal as a quality assurance
tool.

We are currently working to increase its application areas
of the system. Results obtained from simulations show that the
technique can equally be applied to tracks that are close to one
another, and also non-rectangular tracks. In some cases, more
than one network may be required to fulfil the measurement.
Our aim is to create a group of networks, which will classify the
objects, according to their types and ranges, and will direct the
data to the most appropriate network for proper measurement.

Another area of work concerns the rigorous testing of
the optical system and the ANNs, in order to be certain
that the technique can be used regularly for calibrating line-
width standards. The allowed deviations between the master
standard and the sample under evaluation need to be quantified,
and an uncertainty budget needs to be written. Work is in
progress to address these issues.
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